
Unicode UTF-8 Identifiers in
OpenUSD
Edward Slavin, NVIDIA | Feb 28, 2024

• OpenUSD and Identifiers (23.11 vs. 24.02)

• UTF-8 Encoding and Unicode Code Points

• Processing UTF-8 Encoded Strings

• Updating the Path and USDA Parsers

• Special Considerations

Agenda

Unicode Identifiers in OpenUSD
State of the World

#usda 1.0

def “prim” (
 customData = {
 string "München" = "hello“
 }
 _myMetadata = “myValue”
)
{
 int myProperty = 3
}

#usda 1.0

def “München” (
 customData = {
 string "München" = "hello“
 }
 München = “myValue”
)
{
 int München = 3
}

Invalid in OpenUSD 23.11Valid in OpenUSD 23.11

OpenUSD 23.11 Identifiers
ASCII Based

• Identifiers are lexical tokens used to name things

• Prims

• Properties

• Metadata Keys

• Rules for determining if an identifier is valid

• Largely derived from C++ / Python identifier rules

• Current validity rules are ASCII based

• Must start with `_` or [A-Za-z]

• Must continue with `_` or [A-Za-z0-9]

• Downside: Can’t use names natively from non-Latin based languages (or even extended Latin-based character sets)

Moving to a World with Unicode Identifiers
Lots of Challenges and Questions

• What is the right string representation? Do we support multiple?

• What sequences of characters should be considered valid identifiers?

• Could we have paths like / /Forest/ /⊿?

• What is the surface area of impact?

• String utilities in Tf

• String ordering for prim children / properties

• Path interpretation (parsing, validity, etc.)

• Text format ingestion (USDA parsing)

• Additional validation methods across core data model

• The solution must work for the existing OpenUSD Ecosystem

• Should be straightforward for developers to work with

• Need minimal impact to performance, especially for common operations

• Try not to introduce additional external dependencies

Character Representation

• Unicode is a specification that assigns a unique code
point to every character used in human language

• An encoding dictates how to represent and interpret
that code point to create a contract for interchange

• Lots of different encodings (ASCII, UCS-2, UCS-4, UTF-
8, UTF-16, UTF-32, etc.)

• Unicode code points are almost always represented in
UCS-4 (4 bytes/code point)

• UTF-8 is an alternate variable length encoding that
can represent a code point in 1-4 bytes

• Backward compatible with ASCII

Unicode and UTF-8

Encoding examples:

Character UCS-4 Code Point UTF-8 Encoding

∫

ü

\xC2 \x80€

(padding

character)

𫝁

A U+0041

U+00FC \xC3 \xBC

U+222B \xE2 \x88 \xAB

U+0080

\x41

U+2B741 \xF0 \xAB \x9D \x81

\xF0 \x9F \x98 \x80U+1F600

http://www.unicode.org/

Decision: Select UTF-8 as the Standard Character Encoding

• Why UTF-8?

• Defacto standard used everywhere [UTF-8 Everywhere]

• Efficient encoding – common ASCII text still takes 1 byte / character

• Backward compatibility – ASCII values are the same

• No special support needed in C++ / Python

• std::string is text represented as a sequence of bytes and can be interpreted as UTF-8 encoded characters

• Python strings are natively Unicode and UTF-8 is the default encoding for source files

• What implications does the encoding choice have for Unicode character processing?

• Unicode reasoning is done on code points

• Need mechanisms to convert UTF-8 encoded characters to their equivalent code point representations

• Need additional methods to reason on code points

• What class does a character belong to?

• How can I iterate the code points in a UTF-8 encoded string?

• How do I order strings?

https://utf8everywhere.org/

Valid Identifiers

• Unicode defines a set of character properties and
one of these, general category, are assigned to each
code point

• Uppercase letters, numbers, symbols, control
characters, spacing mark, punctuation, etc.

• Derived character properties specify classes that
contain characters from different general categories

• Unicode makes recommendations for what character
sequences should be considered as identifiers
(TR#31)

• XID_Start (Derived from ID_Start)

• XID_Continue (Derived from ID_Continue)

The XID Derived Properties Classes

Examples:

XID_Start
General_Category of uppercase letters, lowercase

letters, titlecase letters, modifier letters, other letters,

letter numbers, plus Other_ID_Start, minus

Pattern_Syntax and Pattern_White_Space code points

plus some additional NFKC-based modifications for
certain characters.

XID_Continue
Include XID_Start characters, plus in the

General_Category of nonspacing marks, spacing

combining marks, decimal number, connector

punctuation, plus Other_ID_Continue, minus

Pattern_Syntax and Pattern_White_Space code points

plus some additional NFKC-based modifications for
certain characters.

myIdentifier0

_myIdentifier01

München

ⅈ75_hgòð㤻
23myIdentifier (Starts with XID_Continue)

‿Identifier (Starts with XID_Continue)
㤼01৪∫ (Contains symbol not in either)

https://www.unicode.org/reports/tr31/

Processing UTF-8 Encoded Strings
Iterating Code Points to Reason About Classes

• To determine validity of an identifier, we need to know:

• The code point representation of each character

• Which character class the code point falls into

• Step 1: Represent the character classes themselves

• Process the DerivedCharacterProperties file contained in the Unicode database

• Efficiently represent the code points that fall in the character classes XID_Start / XID_Continue

• Ranges represented as compile –time arrays of pairs of code points

• Static TfUnicodeXidStartFlagData / TfUnicodeXidContinueFlagData bitsets used for efficient lookup

• Step 2: Provide a way to iterate a UTF-8 encoded string and retrieve code points for each character

• TfUtf8CodePoint provides a structure representing a 32-bit code point value

• TfUtf8CodePointIterator provides an iterator for taking a std::stringview and iterating the content, converting each
UTF-8 encoded character to the equivalent code point (also handles invalid code points, surrogates, etc.)

• TfUtf8CodePointView provides a wrapper around std::stringview that can be iterated as code points rather than bytes

• Step 3: Provide a way to determine whether a code point exists in either XID_Start or XID_Continue

• TfIsUtf8CodePointXidStart

• TfIsUtf8CodePointXidContinue

Iterating a UTF-8 String

• Example 1: Using TfUtf8CodePoint
• Get a code point from a uint32 value
• Get a code point for an ASCII character
• Retrieve the uint32 value of a code point

• Example 2: Iterate a stringview using
TfUtf8CodePointView

• Primary use case, used with range based
for loops to iterate all code points

• Example 3: Iterate a string directly
using TfUtf8CodePointIterator

• Used when you need granular access to
underlying string positions

const std::string_view s1{"ⅈ75_hgòð㤻"};

TfUtf8CodePointView u1{s1};

for (const auto codePoint : u1)

{

 std::cout << codePoint << std::endl;

}

TfStringify(TfUtf8CodePoint(97)) == "a“

TfUtf8CodePointFromAscii('a') == TfUtf8CodePoint(97)

TfUtf8CodePointFromAscii(‘a’).AsUint32() == 97

const std::string s1{"ⅈ75_hgòð㤻"};

TfUtf8CodePointView view {s1};

TfUtf8CodePointIterator iterator = view.begin();

TfUtf8CodePointIterator anchor = iterator;

for(; iterator != view.end(); ++iterator) {

 if (TfIsUtf8CodePointXidContinue(*iterator)) {

 anchor = iterator;

 break;

 }

}

std::string substr = std::string(view.begin().GetBase(),

anchor.GetBase());

Example 1:

Example 2:

Example 3:

The Path Parser

• When a SdfPath object gets constructed from a
string, that string is parsed and each identifier within
that path is validated

• Parsing of the string is done according to the
OpenUSD Path Grammar [currently under
specification in AOUSD]

• Small updates needed to be made to use the new
iterators and character class functions to implement
new identifier validation rules

• Note: Notice that the ‘/’ and ‘.’ characters are still
used in the path to separate prim children and
property children. These characters (and others) are
reserved in the path grammar and cannot be used in
identifiers, even if they fall in XID_Start /
XID_Continue.

Supporting Unicode Identifiers in Prim
and Property Paths

/Scope/Materials/MyMaterial.opacity

/範囲/材料/私の資料.不透明度

The USDA Parser

• Reading USDA content is handled by the
TextFileFormat plugin

• Parses text content using a flex / bison based parser,
grammar is much more complex than the path
grammar (OpenUSD USDA grammar is also under
specification at AOUSD)

• Conceptually, the changes required are isolated to
lexing out `TOK_IDENTIFIER` and
`TOK_NAMESPACED_IDENTIFIER`

• Not as straightforward to granularly specify UTF-8
ranges in flex

• Need a first validity check of the lexed content before
passing on to parser

• A second validity check is then done as part of scene
description creation, where appropriate

Supporting Unicode Identifiers in Scene
Description

#sdf 1.4.32

(

 defaultPrim = "_Süßigkeiten"

 doc = """Tests UTF-8 content in prim names and custom

data."""

)

def Xform "_Süßigkeiten" (

 customData = {

 int 存在する = 7

 }

)

{

 custom double3 xformOp:translate = (4, 5, 6)

 uniform token[] xformOpOrder = ["xformOp:translate"]

 string utf8_情報 = "._ "جيد

def Sphere "ⅈ573"

 {

 float3[] extent = [(-2, -2, -2), (2, 2, 2)]

 double radius = 2

 }

}

General Considerations
Some things to think about using Unicode and UTF-8 Encoding

• This is a great reference for things to think about using Unicode in OpenUSD

• String input that goes through these processing and validation methods must be UTF-8 encoded

• Source code files containing paths

• USDA file content

• OpenUSD will assume that all C++ string content is UTF-8 encoded (tokens, scene paths, asset paths, etc.) unless otherwise
specified

• The transition between Python and C++ should be transparent in most cases due to Boost Python converters registered to Tf

• Full string processing utilities left to higher level libraries

• Don’t panic! Most string methods in Tf will still work for most common usages (e.g., split on a single ASCII character)

• Functionality for case folding, collation, etc. are not provided in OpenUSD

• Normalization

• OpenUSD does not provide facilities for string normalization

• Two strings that are semantically equivalent, but not byte equivalent, will not be considered equal (e.g., VII, Ⅶ)

• This also implies that two paths that are not byte equivalent will not be considered paths to the same prim / property!

• Recommend normalizing prior to construction and use

• Identifier Validity

• Use SdfPath::IsValidIdentifier or SdfPath::IsValidNamespacedIdentifier rather than TfIsValidIdentifier
and TfMakeValidIdentifier

https://openusd.org/release/api/_usd__page__u_t_f_8.html

Unicode Identifiers in OpenUSD
Maybe Someday ☺

#usda 1.0

def “075MyPrim” (
 customData = {
 string "München" = "hello“
 }
 = “myValue”
)
{
 int Mün-chen = 3
}

#usda 1.0

def “München” (
 customData = {
 string "München" = "hello“
 }
 München = “myValue”
)
{
 int München = 3
}

Valid in OpenUSD 24.02 Invalid in OpenUSD 24.02

	Slide 1: Unicode UTF-8 Identifiers in OpenUSD
	Slide 2
	Slide 3: Unicode Identifiers in OpenUSD
	Slide 4: OpenUSD 23.11 Identifiers
	Slide 5: Moving to a World with Unicode Identifiers
	Slide 6: Character Representation
	Slide 8: Decision: Select UTF-8 as the Standard Character Encoding
	Slide 9: Valid Identifiers
	Slide 10: Processing UTF-8 Encoded Strings
	Slide 11: Iterating a UTF-8 String
	Slide 12: The Path Parser
	Slide 13: The USDA Parser
	Slide 14: General Considerations
	Slide 15: Unicode Identifiers in OpenUSD
	Slide 16

