
© 2024 Autodesk. All rights reserved.

Proposal for representing text in USD

Autodesk

USDText

“We make software for people who make things”
Architecture, Engineering,

and Construction

Product Design and

Manufacturing
Media and Entertainment

Image courtesy of Axis Studios

Extensive use of workflows that require transcription

and transfer of design data.

Text in Architecture, Engineering, and Construction

Credit: Breen Design Group
Electrical Diagram authored in AutoCAD

Text in Architecture, Engineering, and Construction

Engineering and Construction Diagram using Revit

Text in Architecture, Engineering, and Construction

Annotation using in Revit

Text in Product Design and Manufacturing

Annotations in Fusion 360 Design

Text in Product Design and Manufacturing

Annotations in Fusion 360 Electronics

Text in Product Design and Manufacturing

Dimensions, Decal in Fusion 360 Design

 2D text primitive in object space.

o Single or Multiple lines.

o 2D in screen space, such as UI and

annotations.

o 3D object in the world.

 Common face styles and layout.

o Artistic styles are not generally used

architectural and manufacturing design

workflows.

UsdText: Text Primitive in USD

Artistic

 Encoding (USD supports UTF-8)

 Script:

 Typeface (font family):

o Font name: Arial, Consolas, Times New Roman, etc.

o Font Style: Regular, Bold, Italic, Bold Italic.

Attributes of a text primitive

Latin Han ArabicDevanagari

 Spacing styles:

o Weight

o Height

o Width

o Oblique

• Different from italic. The angle can be user defined.

o Character space

Attributes of a text primitive

Weight = 200 Weight = 400

Height = 11 Height = 9

Character space is expanded by 1.6Normal character space

Width factor is 150%Width factor is 100%

 Styles for emphasis:

o Underline

o Overline

o Strikethrough

 Text Direction

o Most of the western scripts are from left to right.

o Some scripts are from right to left: Arabic, Hebrew and so on.

o Chinese can be written from left to right, right to left or top to bottom.

Attributes of a text primitive

Left to right

Right to left

Top to bottom

 Paragraph Style (for multiline text)

o Line Space

o Paragraph Space

o Indent

Attributes of Multiline text

o Alignment

o Tab stops

Line space

Paragraph space

First line indent Left indent

Right alignment

Left tab stop

 Column Style (for multiline text)

o Lines direction

• Special for top-to-bottom Chinese

o Margins

o Vertical alignment

Attributes of Multiline text

Right to left Left to right

Four margins

Center alignment

 Font substitution

o Choose another font if the current font can not support the character.

 Complex scripts

Other considerations for Text

The font is Times New Roman. Change to

Dengxian

for Chinese

characters.

The following characters

still use Times New Roman.

Exmaple from Complex text layout – Wikipedia

To illustrate the complex ligatures of devanagari

https://en.wikipedia.org/wiki/Complex_text_layout

 Markup formats

o A multiple line text with complex layout and styles always use text string with markups.

o Common markup formats:

• Rich Text Format

• HTML

o Internal markup format.

 Unit of the font metrics

o The same as world unit if it is a 3D object.

o If it is 2D in screen space, the unit could be pixel, or publishing point.

 Text in a path.

o Not common in architectural and manufacturing design but could be an extension.

Other considerations for Text

https://github.com/autodesk-forks/USD-proposals/tree/adsk/feature/text/proposals/text

o SimpleText (IsA schema /Gprim)

Defines a single line single style text prim

• API schema:

• TextStyle

• TextLayout

• Hydra Prims:

• HdStSimpleText

o MarkupText (IsA schema /Gprim)

Defines a multiline multiple style text prim

• API schema:

• ColumnStyle

• ParagraphStyle

• Hydra Prims:

• HdStMarkupText

USD-Text proposal

Please refer to proposal for complete set of schema properties

def SimpleText "Text" (){
uniform string textData = "The quick brown fox"
color3f[] primvars:displayColor = [(1, 1, 0)]
rel textStyle:binding = </Style>
rel material:binding = </TextRenderer>
uniform string renderer = "TextRenderer"

}

def TextStyle "Style" {
uniform string typeface = "Times New Roman"
uniform int textHeight = 100
uniform bool bold = 1
uniform string overlineType = "normal"

}

Bind to a material
def Material “TextRenderer“ {

token outputs:surface.connect =
</TextRenderer/TextShader.outputs:surface>

def Shader "TextShader“ {
uniform token info:id = "TextRendererSurface"
token outputs:surface

}
}

Example: SimpleText

Example: MarkupText

def MarkupText "TextA" (
){

uniform string markupString =
"{\rtf1\fbidis\ansi\ansicpg1252\deff0\deflang1033{\fonttbl{\f0\fswiss\fprq2
\fcharset0 Calibri;}{\f1\fmodern\fprq1\fcharset0 Consolas;}}{\colortbl
;\red255\green0\blue0;}\viewkind4\uc1\pard\ltrpar\sa160\sl252\slmult1\kerni
ng2\f0\fs22 The quick brown \f1 fox \line\pard\ltrpar jumps over \cf1\ul
the lazy dog.\cf0\kerning0\ulnone\par}"

uniform token markupLanguage = "rtf"

color3f[] primvars:displayColor = [(0, 0, 0)]
rel textStyle:binding = </Style>
rel columnStyle:binding = </column>
rel paragraphStyle:binding = </paragraph>
rel material:binding = </TextRenderer>
uniform string renderer = "TextRenderer"

}

def TextStyle "Style" {

uniform string typeface = "Times New Roman"

uniform int textHeight = 11

}

def ColumnStyle "column" {

uniform float columnWidth = 500

uniform float columnHeight = 300

uniform float2 offset = (0.0, 0.0)

}

def ParagraphStyle "paragraph" {
 uniform float leftIndent = 15.0
 uniform float rightIndent = 30.0
 uniform float firstLineIndent = 0.0
 uniform float paragraphSpace = 15.0

}

def Material “TextRenderer"
{
 token outputs:surface.connect =

</TextRenderer/TextShader.outputs:surface>

 def Shader “TextShader"
 {
 uniform token info:id = “TextRendererSurface"
 token outputs:surface
 }

}

API classes to generate visual representation for Text

 UsdImagingRenderer:

o Generates the geometry and textures for each character in text primitive

 UsdImagingText:

o Consumes the attributes from a text primitive.

o Handles the Typeface properties e.g. (metrics or control points of the outline) from the font file

o Uses UsdImagingRenderer to translate them into renderable items.

 UsdImagingMarkupParser:

o Parses markup data and generates structure of text.

o Can be extended to create custom parsers.

e.g., a RTFParser plugin, which inherits from UsdImagingMarkupParser.

UsdText API Plugins

HdStSimpleText and HdStMarkupText

 A character is composed from a glyph and decorations (underline, overline
and strikethrough).

 Hydra prims will generate one draw item for each of the glyphs
for all the characters. These are then consolidated.

 The draw items are rendered as textured quad that refers to
an texture atlas for every character.

 The decorations are rendered as separate draw items by decomposing them to
basisCurves rprims to render them as lines.

 Storm implementation:

o New shader for text (text.glslfx)

Text prims in Hydra

Example: UsdText in USDView (Storm)

Using a simpler implementation of UsdImagingRenderer that demonstrates UsdImagingText capabilities

Example: UsdText in USDView (Storm)

Using a font elaborator implementation UsdImagingRenderer that demonstrates UsdImagingText

Call for community participation

 Provide feedback on UsdText proposal.

 Seeking partners to review implementation and help accelerate the proposal.

 Prototype UsdText schema with your renderers.

 Proposal: https://github.com/autodesk-forks/USD-proposals/tree/adsk/feature/text/proposals/text

 Implementation: Will be published soon to https://github.com/autodesk-forks/USD

Next steps

Autodesk and the Autodesk logo are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affi liates in the USA and/or other countries. All other brand names, product names, or trademarks belong to their respective holders.
Autodesk reserves the right to alter product and services offerings, and specifications and pricing at any time without notice, and is not responsible for typographical or graphical errors that may appear in this document.

© 2024 Autodesk. All rights reserved.

Supplemental

Current implementation

RenderIndex

HdStMarkupText

SimpleText

Adapter

MarkupText

Adapter

HdStSimpleText

RenderDelegate

texture opacity

shader

text.glslfx
Rprims

geometry UVW

The UsdImagingText plugin

text

string

UsdImaging

SimpleText

UsdImaging

Text

text

style

text

string

UsdImaging

MarkupText

block

style

paragraph

style

text

style

geometry

UVW

texture

UsdImaging

TextRenderer

The UsdImagingTextRenderer plugin

UsdImaging

Text

geometry

UVW

texture

UsdImaging

TextRenderer

glyph

control

points

glyph

image

opacity

shader

The UsdImagingMarkupParser plugin

text

string

UsdImaging

MarkupText

(before parse)

block

style

paragraph

style

text

style

markup

language

UsdImaging

MarkupParser

UsdImaging

Text

UsdImaging

MarkupText

(after parse)

 The VS shader is simple: compute the position using the matrix, and send the textColor,

textOpacity and UVWs to FS.

 The FS shader:
void main(void)
{

float alpha = inData.TextOpacity;
alpha = alpha * getOpacity(inData.UVW);

// The curve primitive have alpha natively. So here we first get the override color, then
// multiply the alpha of the primitive with the override alpha, and finally set the alpha
// to the final color.
vec4 overrideColor = ApplyColorOverrides(vec4(inData.TextColor, 1.0));
alpha = alpha * overrideColor.a;
vec4 finalColor = vec4(overrideColor.rgb, alpha);
vec3 Peye = inData.Peye.xyz / inData.Peye.w;
RenderOutput(vec4(Peye, 1), vec3(0, 0, 1), finalColor, vec4(1));

}

The text.glslfx

	Slide 1: USDText
	Slide 2: “We make software for people who make things”
	Slide 3: Text in Architecture, Engineering, and Construction
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: UsdText: Text Primitive in USD
	Slide 10: Attributes of a text primitive
	Slide 11: Attributes of a text primitive
	Slide 12: Attributes of a text primitive
	Slide 13: Attributes of Multiline text
	Slide 14: Attributes of Multiline text
	Slide 15: Other considerations for Text
	Slide 16: Other considerations for Text
	Slide 17: USD-Text proposal
	Slide 18: Example: SimpleText
	Slide 19: Example: MarkupText
	Slide 20: UsdText API Plugins
	Slide 21: Text prims in Hydra
	Slide 22: Example: UsdText in USDView (Storm)
	Slide 23: Example: UsdText in USDView (Storm)
	Slide 24: Next steps
	Slide 25
	Slide 26: Supplemental
	Slide 27: Current implementation
	Slide 28: The UsdImagingText plugin
	Slide 29: The UsdImagingTextRenderer plugin
	Slide 30: The UsdImagingMarkupParser plugin
	Slide 31: The text.glslfx

