
How Remedy uses USD in its next generation
game development pipelines



1996 2001 2003 2010 2012 2016 2019 2020 2021 2022



WITH WITH WITH

Vanguard*

WITH

Max Payne 
1–2 Remake

Heron*

* project codename



PROPRIETARY ENGINE AND 
TOOLING (NORTHLIGHT)
• World Editor, Game Engine, 

Data Pipelines, etc.

PROPRIETARY DATA FORMATS
• Level/World data, Markup, 

Materials, etc.
• Interop with DCCs through 

import/export

NEW EDITOR
• Built from the ground up
• USD based





Scalability
• Growing teams and content

• Composition arcs
• Flexible VCS workflows

• DCC interoperability
• Data portability

Consolidation
• Unify similar concepts: levels, prefabs, archetypes, presets

Performance
• Asset loading 
• Large worlds



• Tools framework (OmniTool)
in .NET/C#

• Game (runtime engine) in C++

• USD stages synced between 
processes

OmniTool

World Editor Plug-in

USD

Editor Layer

USD

Scene API

Game

gRPC



Layers Stage Content
blocks

Runtime 
components

Composition Export Instantiation

Layers Stage
Composition

OmniTool

Game

Diffs (gRPC)

Editor Layer (c++ dll)

• Tools framework (OmniTool)
in .NET/C#

• Game (runtime engine) in C++

• USD stages synced between 
processes

• Layer diffs applied as live-edits

• Uses SdfLayerStateDelegate



Layers Stage Content
blocks

Runtime 
components

Composition Export Instantiation

Layers Stage
Composition

OmniTool

Game

Diffs (gRPC)

Editor Layer (c++ dll)

• Tools framework (OmniTool)
in .NET/C#

• Game (runtime engine) in C++

• USD stages synced between 
processes

• Layer diffs applied as live-edits

• Uses SdfLayerStateDelegate

• USD not included in final build

• Used only at edit-time



• No support for non-desktop platforms

• PlayStation 5, Xbox Series X|S, Switch, etc…

• USD should be optimized for content creation on desktop

• Composition only at edit-time

• Data transformation/baking for runtime

• Rewriting the runtime was a no-go zone

• Live-editing over import/export/stage reloading workflows

• Flattened “scene” at runtime, no hierarchy is needed (ECS vs Scene Graph)



Editor

Receive DiffgRPC

Game runtime

Editor layer

User Edits
Layer Data

Send Apply
Diff RPC

Create & Send
Live Edit Update EntityApply Diff

Scene API

Modify Layer

USD

Trigger Entity
Changed Callback



Execute 
Command

Game runtime

Editor layer

Gizmo

Shortcuts

gRPC

Editor

User
Executes 

Command

Send Invoke 
Command 

RPC
Edit Scene

Scene API

Apply Diff

Editor

gRPCCreate
Layer Diff

USD

Trigger Diff Callback Send Apply
Diff RPC



• Mesh and other “source” data are 
asset paths in applied schema 
attributes



• Mesh and other “source” data are 
asset paths in applied schema 
attributes

• Only World/Entity concepts can be 
composed

• No opinions on meshes, 
material attributes, etc.



• Mesh and other “source” data are 
asset paths in applied schema 
attributes

• Only World/Entity concepts can be 
composed

• No opinions on meshes, 
material attributes, etc.

• Monolithic Data

• Character geo & skeletons, 
environment assets, etc.

Meshes, Skeletons, …

Sourcedata Assets



• Existing data via custom plugins

• Data transformation for USD layers

• Ingests USD and current data

• Easy to extend

.fbx

SdfFileFormat
Schemas etc…

Conversion 
to Runtime

.usd



• Existing data via custom plugins

• Data transformation for USD layers

• Ingests USD and current data

• Easy to extend

• Composable source assets*

• Modular chunks

• Opinions on source data

* mockup layer, no indication for future



• Most data as USD Animations

Geometry

Materials

Markup

Physics

Etc…



• Most data as USD

• Reusable assets across projects and 
engine

asset.usd

PROJECT A PROJECT B PROJECT C



• Most data as USD

• Reusable assets across projects and 
engine

• No filesystem

asset.usd

PROJECT A PROJECT B PROJECT C



• Most data as USD

• Reusable assets across projects and 
engine

• No filesystem

• USD and DCC Plugins, Schemas,… 
installed on demand, per project

21.08 AR1 21.08 AR2 21.11 AR2 22.03

PROJECT A PROJECT B PROJECT C



• Most data as USD

• Reusable assets across projects and 
engine

• No filesystem

• USD and DCC Plugins, Schemas,… 
installed on demand, per project

• Live Editing with DCCs





• Hierarchy iterative restructuring (deletion, moving, relationships, etc...)

• Schema changes/additions and hotloading

• Variant introspection

• Current Edit Target editable content introspection

• List-editing uniform properties?

• E.g., composing multiple skeletons into one

• Missing schemas like Cloth/Destruction/Animation Curves



RemedyGames

For more details, ask us on slack!


