
How Remedy uses USD in its next generation
game development pipelines
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PROPRIETARY ENGINE AND 
TOOLING (NORTHLIGHT)
• World Editor, Game Engine, 

Data Pipelines, etc.

PROPRIETARY DATA FORMATS
• Level/World data, Markup, 

Materials, etc.
• Interop with DCCs through 

import/export

NEW EDITOR
• Built from the ground up
• USD based





Scalability
• Growing teams and content

• Composition arcs
• Flexible VCS workflows

• DCC interoperability
• Data portability

Consolidation
• Unify similar concepts: levels, prefabs, archetypes, presets

Performance
• Asset loading 
• Large worlds



• Tools framework (OmniTool)
in .NET/C#

• Game (runtime engine) in C++

• USD stages synced between 
processes
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• Tools framework (OmniTool)
in .NET/C#

• Game (runtime engine) in C++

• USD stages synced between 
processes

• Layer diffs applied as live-edits

• Uses SdfLayerStateDelegate

• USD not included in final build

• Used only at edit-time



• No support for non-desktop platforms

• PlayStation 5, Xbox Series X|S, Switch, etc…

• USD should be optimized for content creation on desktop

• Composition only at edit-time

• Data transformation/baking for runtime

• Rewriting the runtime was a no-go zone

• Live-editing over import/export/stage reloading workflows

• Flattened “scene” at runtime, no hierarchy is needed (ECS vs Scene Graph)
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Execute 
Command

Game runtime

Editor layer
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• Mesh and other “source” data are 
asset paths in applied schema 
attributes

• Only World/Entity concepts can be 
composed

• No opinions on meshes, 
material attributes, etc.

• Monolithic Data

• Character geo & skeletons, 
environment assets, etc.

Meshes, Skeletons, …

Sourcedata Assets



• Existing data via custom plugins

• Data transformation for USD layers

• Ingests USD and current data

• Easy to extend

.fbx

SdfFileFormat
Schemas etc…

Conversion 
to Runtime

.usd



• Existing data via custom plugins

• Data transformation for USD layers

• Ingests USD and current data

• Easy to extend

• Composable source assets*

• Modular chunks

• Opinions on source data

* mockup layer, no indication for future



• Most data as USD Animations

Geometry

Materials

Markup

Physics

Etc…
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• Reusable assets across projects and 
engine

asset.usd
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• Most data as USD

• Reusable assets across projects and 
engine

• No filesystem

• USD and DCC Plugins, Schemas,… 
installed on demand, per project

• Live Editing with DCCs





• Hierarchy iterative restructuring (deletion, moving, relationships, etc...)

• Schema changes/additions and hotloading

• Variant introspection

• Current Edit Target editable content introspection

• List-editing uniform properties?

• E.g., composing multiple skeletons into one

• Missing schemas like Cloth/Destruction/Animation Curves



RemedyGames

For more details, ask us on slack!


