
August 1, 2023

Images from Solo: A Star Wars Story. © and TM Lucasfilm Ltd. All Rights Reserved.

https://github.com/AcademySoftwareFoundation/openexr

• Professional-grade High Dynamic Range image storage
format of the motion picture industry, first released in
2003.

• Key contributors: ILM, Weta Digital, DreamWorks,
lots of other

• Joined ASWF in 2019

https://openexr.com

https://github.com/AcademySoftwareFoundation/Imath

https://github.com/AcademySoftwareFoundation/openexr-images

OpenEXR

https://github.com/AcademySoftwareFoundation/openexr
https://openexr.com
https://github.com/AcademySoftwareFoundation/openexr
https://github.com/AcademySoftwareFoundation/openexr

OpenEXR Technical Steering Committee

Cary Phillips
Industrial Light & Magic

Christina Tempelaar-Lietz
Industrial Light & Magic

Joseph Goldstone
ARRI, Inc

Kimball Thurston
Wētā FX

Larry Gritz
Sony Pictures Imageworks

Nick Porcino
Pixar Animation Studios

Peter Hillman
Wētā Digital x Unity

Rod Bogart
Epic Games

● OpenEXR v3.1 Review

● OpenEXR v3.2 Preview

● Discussion topics:

○ Experiments in GPU Decompression & Real-time Streaming

Agenda

● OpenEXRCore, now with DWAA/B compression support

● Performance optimizations (zip, neon, huf decoder, SSE4)

● Bug/build fixes

● New https://openexr.com website, with test images

OpenEXR v3.1

https://openexr.com

● MacPorts is now up to date (v3.1.9)

● PyPI python bindings (a.k.a. “pip install openexr”)

● OpenEXR & USDZ

● Coalition for Content Provenance and Authenticity (C2PA)

Other developments…

● Lossless compression via libdeflate (replaces zlib)

○ New dependency

● ABI compatibility

● New standard optional camera metadata

OpenEXR v3.2 (VFX Ref. Platform 2024)

sensorCenterOffset
Horizontal and vertical distances, in microns, of the center of the light-sensitive area of the camera’s sensor from a point on

that sensor where a sensor surface normal would intersect the center of the lens mount.

sensorOverallDimensions
Dimensions of the light-sensitive area of the sensor, in millimeters, independent of the subset of that region from which image

data are obtained.

sensorPhotositePitch
Distance between centers of sensor photosites, in microns.

sensorAcquisitionRectangle
The rectangular area of the sensor containing photosites the contents of which are in one-to-one correspondence with the

captured sensels, for a monochrome sensor, or with the reconstructed RGB pixels, for a sensor covered with color filter array

material in a Bayer or a similar pattern.

v3.2: New Optional Standard Metadata

Support automated editorial workflow
reelName , imageCounter , ascFramingDecisionList

Support forensics (“which other shots used that camera and lens before the camera firmware was updated?”)
cameraMake , cameraModel , cameraSerialNumber , cameraFirmware , cameraUuid , cameraLabel

lensMake , lensModel , lensSerialNumber , lensFirmware

cameraColorBalance

Support pickup shots (reproduce critical camera settings)
shutterAngle , cameraCCTSetting , cameraTintSetting

Support metadata-driven match move
sensorCenterOffset , sensorOverallDimensions , sensorPhotositePitch , sensorAcquisitionRectangle

nominalFocalLength , effectiveFocalLength , pinholeFocalLength , entrancePupilOffset

tStop (complementing existing aperture)

v3.2: New Optional Standard Metadata

Tracking current work in SMPTE
SMPTE is trying to be more agile, and virtual production makes a good test case for their efforts; there’s an overview blog post

on their site:

v3.2: New Optional Standard Metadata

… that you can find at

https://www.smpte.org/blog/update-on-smptes-rapid-industry-solutions-ris-on-set-virtual-production-osvp-initiative

https://www.smpte.org/blog/update-on-smptes-rapid-industry-solutions-ris-on-set-virtual-production-osvp-initiative

Real-world camera and lens metadata is messy
Camera vendors provide metadata with their own names, their choice of data type, their choice of unit, and perhaps most

importantly their own semantics

SMPTE offers metadata normalization definitions

Anyone with a GitHub account can comment on them: https://github.com/SMPTE/ris-osvp-metadata/

SMPTE works with camera vendors to show how their metadata is mapped to SMPTE RIS OSVP metadata

Anyone with a GitHub account can file an Issue or submit a PR: https://github.com/SMPTE/ris-osvp-metadata-camdkit

ARRI, Blackmagic Design, Canon, RED, Sony contributions so far

v3.2: New Optional Standard Metadata

https://github.com/SMPTE/ris-osvp-metadata/
https://github.com/SMPTE/ris-osvp-metadata-camdkit

The new metadata leverage a very good white paper from Cooke Optics establishing lens terminology for VFX
The definitions in this paper are used in the SMPTE RIS for OSVP camdkit project just mentioned

v3.2: New Optional Standard Metadata

… that you can find at

https://cookeoptics.com/wp-content/uploads/2023/07/Cooke-Camera-Lens-Definitions-for-VFX-210723.pdf

https://cookeoptics.com/wp-content/uploads/2023/07/Cooke-Camera-Lens-Definitions-for-VFX-210723.pdf

What’s next for optional standard metadata?
OpenEXR will continue to track SMPTE’s work in support of virtual production

2023 and early 2024 will likely see some recommendations in support of multiple lens distortion models

Example code relating a well-characterized physical camera on a well-described set to a CG camera described

by the existing Renderman-inspired worldToCamera and worldToNDC attributes

Clear out two optional standard attributes we’ve never seen in the wild, as a better alternative is available now:

Use the ACES Metadata File (AMF) instead of renderingTransform and lookModTransform

v3.2: New Optional Standard Metadata

● Experiments in GPU Decompression & Real-time Streaming

Discussion

Discussion: GPU-based decompression

● Uncompressed EXRs occupy a large portion of disk space.

● Unreal Engine utilizes EXR to play high quality HDR sequences. 30 seconds of uncompressed 8k RGB roughly equates to 140GB.

● Alternatively compressed EXRs require CPU decompression and buffer juggling. CPU Decompression is slow.

● Uncompressed data has large PCIe bandwidth requirements. 8192x4096 RGB 16 bit per channel takes ~45ms to copy from RAM to vRAM on

Nvidia’s A6000 GPU.

● In addition to substantial PCIe throughput users need high disk read speeds. To stream 8k Uncompressed EXR at 24fps users need ~4.8 GB/s

read speed.

● These performance requirements stack with the rendering requirements of large Unreal Engine scenes.

The motivation

Traditional Exr reading approach

● Read into staging buffer in shared memory (RAM).

● Utilize directx 12 copy queue to asynchronously transfer from shared memory to

vRAM Structured buffer.

● Process data into texture as before

● 15fps full texture read if copy time is taken into account. 8192x4096 16 bit RGB

● We increase fps further by loading only the required tiles.

Remaining Problem:

● Disk space and disk load. 30 second 8k 16bit sequence

takes up 140GB of the hard drive.

● Slow throughput (Hopes for PCIe 5.0 and 6.0)

Bare-bones Uncompressed EXR

Current UE5 approach.

A large portion of each frame is consumed by reading
and delivering data to GPU

8192x4096 RGB 16 bit per channel (192MB per frame) @13-15fps 2.4~3GB/s

● 35-50ms to read into shared memory

(system memory).

● 40ms to copy to vRAM.

● 0.4ms to re-arrange encoded EXR

Into a texture

● Total frame time is roughly 75-80ms or

13fps

● With async copy frame time can be improved.

How it looks

How it looks

● NVIDIA introduced GDeflate compression/decompression method that is a GPU friendly extension of deflate (zip).

● It is accessible via nvcomp library.

● CPU side fallback.

● NVIDIA has a fork of libdeflate library with addition of GDeflate (https://github.com/NVIDIA/libdeflate).

● It is cross platform (Unix, MacOS, Windows).

Main Advantages:

● Utilizes GPU for decompression and reduces PCIe bandwidth requirements. (it takes ~50ms to transfer 200MB of data to

GPU via PCIe 5.0 Official transfer rate is ~4GB/s per lane. PCIe 6 is supposedly better.)

● Reduces disk speed and storage requirements.

NVIDIA’s GDeflate

● Microsoft's Direct Storage API allows to read directly from nvme to vRAM.
● Allows to bypass slow system memory.
● It implements Nvidia’s GDeflate compression/decompression on GPU (with caveats).

Direct Storage with GDeflate

Image Source: Nvidia

● To bypass system memory and utilize GPU decompression via Direct Storage (DS) EXRs will need to be compressed and

stored in a certain way.

● DS is most efficient when there are multiple read requests issued (there could be too little or too many requests).

● DS compression has additional steps above nvidia’s.

● Adds its own header with compression information per each request.

● Compresses data as 64KB tiles.

Required changes in EXR storage

Most efficient approach to DS read

● Performance went from 15 to 23fps. 8192x4096 16bit RGB.
● Less system memory usage.
● Less CPU work.
● Reduced PCIe bandwidth.
● Less storage occupied, storage drive utilization is reduced allowing for more reads.

GDeflate Image via Direct Storage

Direct Storage prototype

● Best compression ratio 1:2

Reduces storage requirements.

● PCIe throughput requirements are

halved.

● CPU time is negligible.

● Compared to simplest uncompressed

exr approach total frame time is

reduced from 70ms to 50ms (for

8192x4096 RGB 16 bit per channel

exr). 15 to 23fps.

GDeflate Benchmark

The final result

GDeflate 8192x4096xRGB 16bit per channel EXR

● Reduced file size, therefore reduced drive speed and storage requirements by a factor
of 2.

● Reduced data needed to be transferred to GPU, lessens PCIe throughput requirements.
● GPU decompression.
● Little CPU time required.
● Bypassing System memory and reducing number of buffers allocated and utilized.

GPU Direct + GDeflate (Direct Storage)
Benefits Summary

● Explore new compression schemes

● Performance metrics

● Example images:

https://github.com/AcademySoftwareFoundation/openexr-images

● Support for bfloat16
● PyBind11 for Imath (retire boost dependency)

● Windows build support!

Call for Community Contributions

https://github.com/AcademySoftwareFoundation/openexr-images

Thank you!

https://openexr.com
#openexr

openexr-dev@lists.aswf.io

https://openexr.com

