
1

Validation Framework for OpenUSD
Aaron Luk | ASWF USD Games WG | 23 Aug 2023

NVIDIA OMNIVERSE

OpenUSD-Native Platform for Describing,
Simulating and Collaborating Across Tools

Connects World’s Largest Tool Ecosystems

Built-In Physics and Generative AI

Platform for End-to-End Industrial Digitalization

3

OpenUSD Validation Framework
https://docs.omniverse.nvidia.com/extensions/latest/ext_asset-validator.html

Local Workstation or VM RunUSD – Omniverse Cloud API

https://docs.omniverse.nvidia.com/extensions/latest/ext_asset-validator.html

4

OpenUSD Validation Framework
https://docs.omniverse.nvidia.com/extensions/latest/ext_asset-validator.html

• Compliance – usdchecker, usdfixbrokenpxrschemas

• Enforce and mitigate content incompatibilities as USD data models

rapidly evolove

• e.g., UsdLux properties now require “inputs:” prefixes to conform with

UsdShadeConnectableAPI

• e.g., UsdShade material bindings now require

UsdShadeMaterialBindingAPI to be applied

• Recommendations – custom rules

• Potentially site-specific

• e.g., single concrete root prim as layer default for simplicity

Note that validation often requires context that is not available until the

entire stage is composed!

https://docs.omniverse.nvidia.com/extensions/latest/ext_asset-validator.html

5

Validation in Context
Enforcing Data Specifications and Recommendations

• e.g., Nested gprims are “illegal”

• Not enforced at authoring time

• Sdf and Usd API are not gprim-aware

• Key imaging behaviors such as visibility “assume” that gprims are

leaves in the composed stage hierarchy

• Runtime behavior is not defined for nested gprims

• e.g., Recommended Model Hierarchy via kinds

• kind=component as leaves

• kind=group can only have groups and components as children

• Ill-formed model hierarchies may prematurely prune at runtime

Validation communicates standard data specifications and recommended

“best practices” in the specific context of any given dataset.

6

Omniverse Validation Framework
Deployments in Action

• In-app

• Interactive, cf. spell-check /

linting

• In Connectors

• Ensure valid exports

• In Microservices

• Embed or deploy into any

OpenUSD experience

7

RunUSD
https://developer.nvidia.com/usd/validator

https://developer.nvidia.com/usd/validator

8

Validation Approaches
General Content Analysis and Mitigation

• “Offline” / asynchronous

• Not enforced at authoring time

• The general approach for OpenUSD today

• “Debug mode”

• Post-authoring hooks enforce validation rules

• Pay performance penalty to discover issues ASAP

• Hybrids, chained with other services for content conversion and

optimization…

There are many approaches to content validation.

The key thing is to communally build up a library of “business logic” to

embody rules and best practices to complement forthcoming data

specifications from AOUSD.

9

	Slide 1: Validation Framework for OpenUSD
	Slide 2
	Slide 3: OpenUSD Validation Framework
	Slide 4: OpenUSD Validation Framework
	Slide 5: Validation in Context
	Slide 6: Omniverse Validation Framework
	Slide 7: RunUSD
	Slide 8: Validation Approaches
	Slide 9

