
OpenEXR Project Ideas
Potential projects for the Google Summer of Code or beyond.

Explore Other Compression Schemes. 
OpenEXR currently supports lossless compression through , but other more modern compression schemes exist. We would like to explore zlib
adding additional options for compressing with other utilities, such was . To do this properly, we also need to assemble a standard set Zstandard
of images to use as benchmarks, and also develop some basic performance metrics in order to compare compression/decompression time 
across different options.

Performance Metric Suite
OpenEXR needs a mechanism for quantifying read/write and compress/decompress times. 

A Fast Header Read
Extend the OpenEXR API with a way to read just the header attributes you request, and nothing else, for efficiency when applications need only 
the header information but no pixel data.

Add a Part Type That is Only Metadata 
An image part that holds only metada with no pixel data could be useful for managing metadata in motion picture pipelines.

Add support for bfloat16
https://en.wikipedia.org/wiki/Bfloat16_floating-point_format
Adding a new pixel type might be tricky, and may present backwards compatibility issues.

Add Support for Sorting of Attributes
Currently, attributes are written and read in alphabetical order in the file, and stored alphabetically internally. 
But sometimes it would be convenient to organize and present them in the API, or GUI's, in a logical, non-alphabetical order.
The solution needs some investigation, but it might involve changing the internal attribute storage mechanism, or leaving the internal 
representation alone and adding an "order" attribute to store the preferred order.

Convert boost::python Imath Bindings to pybind11
Eliminate Imath's dependency on boost/boost_python by re-implementing the bindings using pybind11.

Add a New Spectral Attribute Type
Follow up on Alban Fichet's spectral image storage presentation by implementing a custom attribute to hold the spectra: https://hal.inria.fr/hal-
03252797

Switch C++ API to Use the New C Core
Retrofit the existing C++ API to use the new thread-safe C API underneath

https://zlib.net/
http://facebook.github.io/zstd/
https://en.wikipedia.org/wiki/Bfloat16_floating-point_format
https://hal.inria.fr/hal-03252797
https://hal.inria.fr/hal-03252797

	OpenEXR Project Ideas

