
Movie Compression with ffmpeg for media review.
FFmpeg is frequently used by different studios for encoding their media, however the documentation for ffmpeg is often poor, or cryptic so its often harder
than it should be to come up with a good starting point. We are aiming to come up with recommendations for different scenarios as well as document what
the different flags are doing with the aim to make this easier to get to a good baseline.

Overview
Presentation Links
Overall workflow
Codec Selection.

h264
h265/HVEC
ProRes
VMAF

Color Preservation
Testing Methodology
Test Sources
RGB/YCrCb Colorspace Conversion

colormatrix filter
colorspace filter
libswscale filter

Color Metadata NCLC/NCLX
Color Range
Color Space
Color Primaries
Color Transfer Characteristic aka color_trc

Web Browser Deliverables
Gamma 2.4
Full range vs. legal range

Overview

We are looking for recommendations for the following:

Best color preservation for output to:
Web, OSX, IOS and Windows.
Common applications: e.g. RV, Nuke.
Rec709 and sRGB displays to start with, but eventually, P3, rec2020 and HDR displays.
Web browser - Firefox reviewing mp4. - use firefox plugin.
RV

Codec recommendations for:
Proxy H264 playback (e.g. web streaming), should be setup for web streaming.
Animation/Modelling/Layout movie playback. - somewhat lower quality playback, but should always provide smooth motion.
Lookdev/lighting/compositing movie playback - should have excellent color fidelity and minimal encoding artifacts

Should any filmlook be baked in, or should we assume that is always applied during viewing.
How much should we be able to adjust color and have the image hold up? (Or rely on exr's for that?).

Export to editorial.
High-resolution or frame rate - e.g. 4k, 8k, 60fps, 120fps.
Stereo or VR.

Q: Which container should we be considering: mov, mp4, mxf.

Where ffmpeg arguments, it would be great to document why we are using them, rather than ending up with a recipe.

Presentation Links

Overall workflow

For this paper, we are assuming that we are encoding from a file-sequence of frames into a movie (rather than re-encoding a movie), but we are also
assuming almost all of the colorspace work would be done outside of ffmpeg, with tools using the OCIO library. Examples could include nuke and oiio.
Once we get to ffmpeg, the goal being that the pixel data we get in, should be as close as possible to the data we get out of ffmpeg. However, there are
still quite a few areas that a ffmpeg user could go wrong, which we break down below.

TODO: Find examples of overall workflow.

Codec Selection.

Name Target Usage Source ffmpeg flags Description Size

libx264 -
pix_fmt
yuv420p

Proxy playback, for
web review, and non-
color critical
workflows, e.g.
animation, modeling,
etc.

This should be a lightweight
compression, capable of
supporting HD with a reasonable
bit-rate, hopefully supporting a
wide range of web browsers.
Final review, e.g. lighting

libx264 -
pix_fmt
yuv444p
10le

Final review, e.g.
lighting

https://trac.ffmpeg.org/wiki
/colorspace

-c:v libx264 -preset placebo -qp 0 -x264-params
"keyint=15:no-deblock=1" -pix_fmt yuv444p10le -
sws_flags spline+accurate_rnd+full_chroma_int -vf
"colorspace=bt709:iall=bt601-6-625:fast=1" -color_range
1 -colorspace 1 -color_primaries 1 -color_trc 1

libx264r
gb

Final review, e.g.
lighting

This is a variant of the above, its
essentially using x264, but not
converting to YCrCb.

libx265 -c:v libx264

Prores 4
444

For delivery to
editorial

-c:v prores_ks -profile:v 4444 -qscale:v 1 -pix_fmt
yuv444p10le -sws_flags
spline+accurate_rnd+full_chroma_int -vf
"colorspace=bt709:iall=bt601-6-625:fast=1" -color_range
1 -colorspace 1 -color_primaries 1 -color_trc 1

-profile:v 4444 is equivalent to -profile:v 4

shotgun
_diy_enc
ode

https://support.
shotgunsoftware.com/hc
/en-us/articles/219030418-
Do-it-yourself-DIY-
transcoding',

-vcodec libx264 -pix_fmt yuv420p -g 30 -vprofile high -bf 0
-crf 2

DnxHD For delivery to
editorial

Prores
422 HQ

For delivery to
editorial

Some FFMpeg commands
I need to remember for
converting footage for
video editing. http://bit.ly
/vidsnippets · GitHub

-pix_fmt yuv422p10le -c:v prores_ks -profile:v 3 -vendor
ap10 -sws_flags spline+accurate_rnd+full_chroma_int -vf
"colorspace=bt709:iall=bt601-6-625:fast=1" -color_range
1 -colorspace 1 -color_primaries 1 -color_trc 1

https://trac.ffmpeg.org/wiki/colorspace
https://trac.ffmpeg.org/wiki/colorspace
https://support.shotgunsoftware.com/hc/en-us/articles/219030418-Do-it-yourself-DIY-transcoding
https://support.shotgunsoftware.com/hc/en-us/articles/219030418-Do-it-yourself-DIY-transcoding
https://support.shotgunsoftware.com/hc/en-us/articles/219030418-Do-it-yourself-DIY-transcoding
https://support.shotgunsoftware.com/hc/en-us/articles/219030418-Do-it-yourself-DIY-transcoding
https://support.shotgunsoftware.com/hc/en-us/articles/219030418-Do-it-yourself-DIY-transcoding
https://gist.github.com/AbsoluteDestiny/ac0551a32646d39b62d773b416737bfc
https://gist.github.com/AbsoluteDestiny/ac0551a32646d39b62d773b416737bfc
https://gist.github.com/AbsoluteDestiny/ac0551a32646d39b62d773b416737bfc
https://gist.github.com/AbsoluteDestiny/ac0551a32646d39b62d773b416737bfc
https://gist.github.com/AbsoluteDestiny/ac0551a32646d39b62d773b416737bfc

1.
2.
3.

Note the -vendor ap10 part below is only needed if working with Final Cut, but it does no harm otherwise.

-profile:v 3 is equivalent to -profile:v hq

h264

Key flags (see) https://trac.ffmpeg.org/wiki/Encode/H.264

-crf 23 - This is the constant rate factor, controlling the default quality (see:) where -crf 0 is https://slhck.info/video/2017/02/24/crf-guide.html
uncompressed. By default this is set to 23, which is probably good enough for our needs.
-qp 23 - Quantization Parameter - it is recommended that you do not use this, in preference to -crf above (see: https://slhck.info/video/2017/03/01

)/rate-control.html
-preset slower - https://trac.ffmpeg.org/wiki/Encode/H.264#FAQ
-tune film - Optionally use the tune option to change settings based on specific inputs - - see also: https://trac.ffmpeg.org/wiki/Encode/H.264#FAQ

 I suspect that we would want to use one of:https://superuser.com/questions/564402/explanation-of-x264-tune
-tune film good for live action content.
-tune animation good for animated content with areas of flat colors.
-tune grain good for live action content where you want to preserve the grain as much as possible.

-qscale:v 1 - Generic quality scale flag: - not sure if its needed?https://www.ffmpeg.org/ffmpeg.html#toc-Main-options

-preset slow -crf 18 level 4 profile high.

RV - 10bit YUV444.

Better to stick with yuv –

FFMPEG.

TODO:

Suggestions for max-bitrate?
Suggestions for preset - ? slow
Suggestions for tune

h265/HVEC

Support: (or) currently no support for h265 on chrome or chromium based browsers.https://caniuse.com/hevc https://www.chromium.org/audio-video

links:

https://codecalamity.com/encoding-uhd-4k-hdr10-videos-with-ffmpeg/
https://codecalamity.com/encoding-settings-for-hdr-4k-videos-using-10-bit-x265/
https://support.frame.io/en/articles/4305241-creating-hdr-files-for-frame-io
https://stackoverflow.com/questions/69251960/how-can-i-encode-rgb-images-into-hdr10-videos-in-ffmpeg-command-line
https://brandur.org/fragments/ffmpeg-h265

HDR

https://developer.apple.com/av-foundation/High-Dynamic-Range-Metadata-for-Apple-Devices.pdf
https://www.avsforum.com/threads/open-source-video-testing-calibration-patterns.2944378/
https://github.com/test-full-band/tfb-video/releases
https://trev16.hatenablog.com/entry/2021/07/23/145725 – good site for HDR test sites.

ProRes

There are four Prores encoders, Prores, Prores_ks, Prores_aw and now with ffmpeg 5 VideoToolBox Prores, which is a hardware based OSX M1 encoder
/decoder.

From the recommendation is to use Prores_ks with -profile:v 3 and the qscale of 11https://trac.ffmpeg.org/wiki/Encode/VFX

Options that can be used include:

-profile:v values can be one of.
proxy (0)
lt (1)
standard (2)
hq (3)
4444 (4)
4444xq (5)

-qscale:v between values of 9 - 13 give a good result, 0 being best.
-vendor apl0 - tricks the codec into believing its from an Apple codec.

Using this with the usual color space flags, seems to work well with the exception of ffmpeg itself, which needs the flags:-vf scale=in_color_matrix=bt709:
added to the command to ensure the right input colorspace is recognised, e.g.:out_color_matrix=bt709

https://trac.ffmpeg.org/wiki/Encode/H.264
https://slhck.info/video/2017/02/24/crf-guide.html
https://slhck.info/video/2017/03/01/rate-control.html
https://slhck.info/video/2017/03/01/rate-control.html
https://trac.ffmpeg.org/wiki/Encode/H.264#FAQ
https://trac.ffmpeg.org/wiki/Encode/H.264#FAQ
https://superuser.com/questions/564402/explanation-of-x264-tune
https://www.ffmpeg.org/ffmpeg.html#toc-Main-options
https://caniuse.com/hevc
https://www.chromium.org/audio-video
https://codecalamity.com/encoding-uhd-4k-hdr10-videos-with-ffmpeg/
https://codecalamity.com/encoding-settings-for-hdr-4k-videos-using-10-bit-x265/
https://support.frame.io/en/articles/4305241-creating-hdr-files-for-frame-io
https://stackoverflow.com/questions/69251960/how-can-i-encode-rgb-images-into-hdr10-videos-in-ffmpeg-command-line
https://brandur.org/fragments/ffmpeg-h265
https://developer.apple.com/av-foundation/High-Dynamic-Range-Metadata-for-Apple-Devices.pdf
https://www.avsforum.com/threads/open-source-video-testing-calibration-patterns.2944378/
https://github.com/test-full-band/tfb-video/releases
https://trev16.hatenablog.com/entry/2021/07/23/145725
https://trac.ffmpeg.org/wiki/Encode/VFX

ffmpeg.exe -i INPUTFILE.mov -compression_level 10 -pred mixed -pix_fmt rgba64be -sws_flags
spline+accurate_rnd+full_chroma_int -vframes 1 -vf scale=in_color_matrix=bt709:out_color_matrix=bt709 OUTPUTFILE.
png

However, other encoders seem to be recognised correctly, so there is clearly some metadata missing. I did try using the prores_metadata filter to try
adding some additional parameters, but it didnt seem to help.

ffmpeg.exe -i ./chip-chart-yuvconvert\basicnclc.mov -c copy -bsf:v prores_metadata=color_primaries=bt709:
color_trc=bt709:colorspace=bt709 chip-chart-yuvconvert\basicnclcmetadata.mov

TODO:

Figure out the missing metadata.
Wedge qscale values
Do some colorspace tests with different qscale values to see where color breaks down.

VMAF

I did explore using VMAF - Video Multi-Method Assessment Fusion as a way to quantify the compression, the notes for setting this up are below, however
I think we are going with a fairly high compression factor , so I think this is probably not really going to help us much.

https://github.com/Netflix/vmaf

https://jina-liu.medium.com/a-practical-guide-for-vmaf-481b4d420d9c

https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652

https://ottverse.com/vmaf-ffmpeg-ubuntu-compilation-installation-usage-guide/ - building VMAF on ubuntu.

Color Preservation

Testing Methodology

Converting SMPTE color bars to the compressed movie, using ffmpeg to expand and then compare with OIIO. NOTE, for compression schemes that are
not 444 we may need to mask the transitions.

Testing loading the compressed movie in to RV, Firefox, VLC, Avid, resolve, , to compare the resulting color transformation - not sure if there is a
procedural way to run this?

For the tests below we are assuming that other tools are being used (e.g. oiiotool) to convert the rendered frames into an intermediate file (e.g. PNG) in
the target color-space.

Q: Currently focusing just on color matching in vs. out, but should also do EXR ACEScg in to resulting movie. Feels like we should also bless full pipeline,
e.g.: Reference "Dailies script" https://github.com/jedypod/generate-dailies

Test Sources

SMPTE test chart: https://commons.wikimedia.org/wiki/File:SMPTE_Color_Bars_16x9.svg

Download image sequence from: - https://senkorasic.com/testmedia/

Explore netflix: https://opencontent.netflix.com/

Test Results:

taurich.org/encodingTests/results.html

Links

An excellent starting point for this is: https://trac.ffmpeg.org/wiki/colorspace
https://github.com/RxLaboratory/DuME/blob/master/src/FFmpeg_COLORS.md
https://medium.com/invideo-io/talking-about-colorspaces-and-ffmpeg-f6d0b037cc2f
https://docs.nvidia.com/video-technologies/video-codec-sdk/ffmpeg-with-nvidia-gpu/
https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.1886-0-201103-I!!PDF-E.pdf - the BT1886 spec, esentially gamma 2.4 rec709 primaries.

Notes

The big issue here is that by default if you start converting images to another format, and ffmpeg cannot determine the colorspace it will default to bt601.
So many of the flags below are to:

A: Tell ffmpeg that the source media is in fact bt709

B: Add the metadata to the output, so that other future conversions also know how to convert it back.

C: Do as clean a conversion from RGB to YUV as possible.

https://github.com/Netflix/vmaf
https://jina-liu.medium.com/a-practical-guide-for-vmaf-481b4d420d9c
https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://ottverse.com/vmaf-ffmpeg-ubuntu-compilation-installation-usage-guide/
https://github.com/jedypod/generate-dailies
https://commons.wikimedia.org/wiki/File:SMPTE_Color_Bars_16x9.svg
https://senkorasic.com/testmedia/
https://opencontent.netflix.com/
http://taurich.org/encodingTests/results.html
https://trac.ffmpeg.org/wiki/colorspace
https://github.com/RxLaboratory/DuME/blob/master/src/FFmpeg_COLORS.md
https://medium.com/invideo-io/talking-about-colorspaces-and-ffmpeg-f6d0b037cc2f
https://docs.nvidia.com/video-technologies/video-codec-sdk/ffmpeg-with-nvidia-gpu/
https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.1886-0-201103-I!!PDF-E.pdf

RGB/YCrCb Colorspace Conversion

As a rule of thumb, we would like ffmpeg to do as little as possible in terms of color space conversion. i.e. what comes in goes out. The problem is that
most of the codecs are doing some sort of RGB to YUV conversion (technically YCrCb). The notable exception is x264rgb (see above). For more
information, see: https://trac.ffmpeg.org/wiki/colorspace

For examples comparing these see: https://richardssam.github.io/ffmpeg-tests/tests/chip-chart-yuvconvert/compare.html

colormatrix filter

ffmpeg -y -i ../sourceimages/chip-chart-1080-noicc.png -sws_flags spline+accurate_rnd+full_chroma_int -vf
"colormatrix=bt470bg:bt709" -c:v libx264 -preset placebo -qp 0 -x264-params "keyint=15:no-deblock=1" -pix_fmt
yuv444p10le -qscale:v 1 -color_range 1 -colorspace 1 -color_primaries 1 -color_trc 1 ./chip-chart-yuvconvert
/spline444colormatrix2.mp4

This is the most basic colorspace filtering. bt470bg is essentially part of the bt601 spec. See: https://www.ffmpeg.org/ffmpeg-filters.html#colormatrix

colorspace filter

ffmpeg -y -i ../sourceimages/chip-chart-1080-noicc.png -sws_flags spline+accurate_rnd+full_chroma_int -vf
"colorspace=bt709:iall=bt601-6-625:fast=1" -c:v libx264 -preset placebo -qp 0 -x264-params "keyint=15:no-
deblock=1" -pix_fmt yuv444p10le -qscale:v 1 -color_range 1 -colorspace 1 -color_primaries 1 -color_trc 1 ./chip-
chart-yuvconvert/spline444colorspace.mp4

Using colorspace filter, better quality filter, SIMD so faster too, can support 10-bit too. The second part -vf "colorspace=bt709:iall=bt601-6-625:fast=1"
encodes for the output being bt709, rather than the default bt601 matrix. iall=bt601-6-625 says to treat all the input (colorspace, primaries and transfer
function) with the bt601-6-625 label). fast=1 skips gamma/primary conversion in a mathematically correct way. See: https://ffmpeg.org/ffmpeg-filters.
html#colorspace

libswscale filter

ffmpeg -y -i ../sourceimages/chip-chart-1080-noicc.png -sws_flags
spline+accurate_rnd+full_chroma_int+full_chroma_inp -vf "scale=in_range=full:in_color_matrix=bt709:out_range=tv:
out_color_matrix=bt709" -c:v libx264 -preset placebo -qp 0 -x264-params "keyint=15:no-deblock=1" -pix_fmt
yuv444p10le -qscale:v 1 -color_range 1 -colorspace 1 -color_primaries 1 -color_trc 1 ./chip-chart-yuvconvert
/spline444out_color_matrix.mp4

Using the libswscale library. Seems similar to colorspace, but with image resizing, and levels built in. https://www.ffmpeg.org/ffmpeg-filters.html#scale-1

This is the recommended filter.

Color Metadata NCLC/NCLX

The above gets the underlying data stored correctly, but there are additional metadata flags that can be set that are interpreted by some players, these are
the NCLC color tags for color primaries, transfer function and conversion matrix. This is defined as a ISO spec here (see https://www.iso.org/standard

). The numbers below are part of the definition./73412.html

NCLC stands for Non-Consistent Luminance Coding, a brief overview of its history is . For MP4 files, its also known as NCLX. Additionally this here
metadata can also be represented in the h264 metadata stream in the video usability Information (VUI) block.

You can read the metadata using which is a visual browser of the mp4 metadata, and look at moov/trak/mdia/minf/stbl/stsd/avc1/colrmp4box.js

NOTE: None of the flags below affect the encoding of the source imagery, they are meant to be used to guide how the mp4 file is decoded.

The docs are pretty sparse for this, some of the better info is FFmpeg/pixfmt.h at master · FFmpeg/FFmpeg · GitHub

links:

Color Range

Uses the flag -color_range e.g. -color_range 1 or -color_range tv

Numeric value String Values Numeric range Notes

0 Unspecified

1 tv

mpeg

16-135 This is the default.

2 pc

jpeg

0-255

https://trac.ffmpeg.org/wiki/colorspace
https://richardssam.github.io/ffmpeg-tests/tests/chip-chart-yuvconvert/compare.html
https://www.ffmpeg.org/ffmpeg-filters.html#colormatrix
https://ffmpeg.org/ffmpeg-filters.html#colorspace
https://ffmpeg.org/ffmpeg-filters.html#colorspace
https://www.ffmpeg.org/ffmpeg-filters.html#scale-1
https://www.iso.org/standard/73412.html
https://www.iso.org/standard/73412.html
http://poynton.ca/notes/misc/sde-nclc-vui-nclx.html
https://gpac.github.io/mp4box.js/test/filereader.html
https://github.com/FFmpeg/FFmpeg/blob/master/libavutil/pixfmt.h

Color Space

This defines the YUV colorspace type, as defined by ISO/IEC 23091-2_2019 subclause 8.3

Use flag -colorspace, e.g. -colorspace 1 or -colorspace rec709

This is a subset of the full list of values, for more details, see FFmpeg/pixfmt.h at master · FFmpeg/FFmpeg · GitHub

Numeric Value String values Description

0 rgb

1 bt709 Typically set it to this.

2 unspecified

9 bt2020nc

bt2020_ncl

ITU-R BT2020 non-constant luminance system

10 bt2020c

bt2020_cl

ITU-R BT2020 constant luminance system

Color Primaries

Chromaticity coordinates of the source primaries. These values match the ones defined by ISO/IEC 23091-2_2019 subclause 8.1 and ITU-T H.273.

This is defining your color gamut, so you typically want to be setting this for -color_primaries 1 unless you are working in bt2020.

This is a subset of the full list of values, for more details, see FFmpeg/pixfmt.h at master · FFmpeg/FFmpeg · GitHub

Numeric Value String Values Description

1 bt709

9 bt2020

11 DCI P3

12 P3 D65 / Display P3

Your browser does not support the HTML5 video element

Color Transfer Characteristic aka color_trc

These values match the ones defined by ISO/IEC 23091-2_2019 subclause 8.2.

This is defines the OETF, which typically is the gamma.

Numeric Value String Values Description

1 bt709 Note this is the camera gamma i.e. ~1.95 this is NOT bt1886

2 Image characteristics are unknown or are determined by the
application.

4 gamma22

5 gamma28

8 linear Linear

9 log

log100

https://github.com/FFmpeg/FFmpeg/blob/master/libavutil/pixfmt.h
https://github.com/FFmpeg/FFmpeg/blob/master/libavutil/pixfmt.h

13 iec61966_2_1 IEC 61966-2-1 or sRGB or sYCC

14 bt2020_10

bt2020_10bit

Note this is the camera gamma i.e. ~1.95

15 bt2020_12

bt2020_12bit

Note this is the camera gamma i.e. ~1.95

16 smpte2084 bt2100-1 perceptual quantization (PQ) system.

17 smpte428 SMPTE ST 428-1 - DCI ?

18 arib-std-b67 ARIB STD-B67 bg2100-1 hybrid log-gamma (HLG) system

NOTE: -color_trc 1 - is not bt1886, but is actually the camera gamma, so has a gamma of ~1.95 rather than the 2.4 that is defined by bt1886. In order to
get a gamma 2.4, you will need to use a quicktime hack (see below), but this only works on OSX. However, we suspect that chrome ignores the setting
(see the following tests).

The following page shows what applying different color TRC values to the same source image:

https://taurich.org/encodingTests/ICCTest/greyramp/compare.html

What you may notice is on Chrome on windows, there is a slight color shift when compared to the PNG file. The other thing that is odd is that the bt709
flag doesnt actually seem to be doing anything, it functions identically to color-trc=2 which is a 'no-op". Its possible that this was picked deliberately due to
too many people incorrectly assuming it was bt1886.

This second test highlights that better, by giving a source image that is designed so that when the images are displayed with the TRC settings they should
match with a gamma 2.2 monitor.

https://taurich.org/encodingTests/ICCTest/greyramp-rev-ps/compare.html https://www.color.org/version4html.xalter

Again, you will notice the bt709 (color-trc=1) is wildly off.

For more information on this I recommend:

https://vimeo.com/349868875
 https://developer.apple.com/documentation/avfoundation/media_assets_and_metadata/sample-level_reading_and_writing

 /tagging_media_with_video_color_information
https://www.iso.org/standard/73412.html - Note this has a link to the of the earlier version of the doc, the latest and paywalled version is download
here: https://www.iso.org/standard/57794.html
https://github.com/bbc/qtff-parameter-editor - A BBC open source app, for setting quicktime NCLC attributes.
https://vimeo.com/349868875 - Video from baselight, reviewing setting the right NCLC tags for apple colorsync.

Web Browser Deliverables

How should we be encoding content for a web browser.

Most windows laptops and most monitors typically default to a sRGB color space, the tricky part is that sRGB is sometimes interpreted as having exactly a
2.2 gamma, and sometimes a hybrid curve (based on the spec), for more details on this, see: https://vimeo.com/442069591

Questions to be answered:

On windows do any of the browsers read the color management settings flags for each monitor?
Why does everybody set -color_trc 1 ? - it seems completely meaningless?
Find the details about the firefox plugin for color management?
What do ICC profiles for stills do on windows/linux boxes? - Are there situations where this is replicated for movies.
Color shift on Chrome, reported: https://bugs.chromium.org/p/chromium/issues/detail?id=1262622#makechanges

Browser Platform Interpret NCLC flags Color Managed Tested Notes

Firefox OSX No

Firefox Windows No

Firefox Windows

Safari OSX Yes Yes

Chrome OSX Yes Yes

Safari IOS No

https://taurich.org/encodingTests/ICCTest/greyramp/compare.html
https://taurich.org/encodingTests/ICCTest/greyramp-rev-ps/compare.html
https://www.color.org/version4html.xalter
https://vimeo.com/349868875
https://developer.apple.com/documentation/avfoundation/media_assets_and_metadata/sample-level_reading_and_writing/tagging_media_with_video_color_information
https://developer.apple.com/documentation/avfoundation/media_assets_and_metadata/sample-level_reading_and_writing/tagging_media_with_video_color_information
https://www.iso.org/standard/73412.html
https://standards.iso.org/ittf/PubliclyAvailableStandards/c073412_ISO_IEC_23091-2_2019(E).zip
https://www.iso.org/standard/57794.html
https://github.com/bbc/qtff-parameter-editor
https://vimeo.com/349868875
https://vimeo.com/442069591
https://bugs.chromium.org/p/chromium/issues/detail?id=1262622#makechanges

Chrome Windows Sometimes Seems to occasionally stop working, it could be related to multiple screens.

Chrome Linux

Edge Windows Sometimes Seems to occasionally stop working, it could be related to multiple screens.

Gamma 2.4

There is not a color_trc flag for gamma 2.4, the only option that exists for OSX is a cheat

using the flags "-color_trc 2 -movflags write_colr+write_gama -mov_gamma 2.4" but this only works for a full quicktime file, not a mp4 file. So the resulting
file will not play correctly on windows.

 -color_trc 2 – means the transfer function is unspecified.

-movflags write_colr+write_gama -mov_gamma 2.4 – allows you to specify a gamma parameter directly to the quicktime file.

e.g.

ffmpeg -y -i chip-chart-1080.png -c:v libx264 -pix_fmt yuv444p -qscale:v 1 -sws_flags spline+accurate_rnd+full_chroma_int -vf "colorspace=bt709:
iall=bt601-6-625:fast=1" -color_range 1 -colorspace 1 -color_primaries 1 -color_trc 2 -movflags write_colr+write_gama -mov_gamma 2.4 test2-h264-
ffmpeg-yuv444p-gamma24.mp4

Full range vs. legal range

Typically x264 (and other codecs) are following the video standard that lumance is scaled to the range 16-235. This has a history from early signaling
where 236-255 were used for signaling and 0-15 to avoid any noise in the low end (some of the logic was derived from analog video)

However, that means that when we do the conversion, we can end up with 235-16 = 219 luminance values, rather than 255 (14% less levels). This is
actually supported in web browsers, e.g.: chrome, firefox, safari.

The following web page demonstrates the resulting differences:

https://taurich.org/encodingTests/ICCTest/greyramp-fulltv/compare.html

There are two ways to do the conversion:

ffmpeg -y -i radialgrad.png -sws_flags spline+accurate_rnd+full_chroma_int -vf "scale=in_range=full:in_color_matrix=bt709:out_range=full:
out_color_matrix=bt709" -c:v libx264 -pix_fmt yuvj420p -qscale:v 1 -color_range 2 -colorspace 1 -color_primaries 1 -color_trc 1 ./greyramp-fulltv/greyscale-
fullj.mp4

or

ffmpeg -y -i radialgrad.png -sws_flags spline+accurate_rnd+full_chroma_int -vf "scale=in_range=full:in_color_matrix=bt709:out_range=full:
out_color_matrix=bt709" -c:v libx264 -pix_fmt yuv420p -qscale:v 1 -color_range 2 -colorspace 1 -color_primaries 1 -color_trc 1 ./greyramp-fulltv/greyscale-
full.mp4

TODO:

Do tests of what happens when ffmpeg then converts the resulting file format, to ensure that the correct range is read.
Find reference for archaic legal range.

References:

https://news.ycombinator.com/item?id=20036710

Other links

https://github.com/bbc/qtff-parameter-editor

https://taurich.org/encodingTests/ICCTest/greyramp-fulltv/compare.html
https://news.ycombinator.com/item?id=20036710
https://github.com/bbc/qtff-parameter-editor

	Movie Compression with ffmpeg for media review.

