
December 13, 2023
Time
9AM PST

Agenda
New Unity plugin
Any follow up discussion on the wonderful presentations shown last month from @Alan Kent and @Kev Kirkland
Spline Animation Proposal : Discussion on assembling a character in USD, this is an interesting topic that @Frieder Erdmann brought up the
other week.

Notes

Unity Plugin

https://forum.unity.com/threads/new-openusd-packages-now-available.1524583/

USD Importer
USD Exporter
USD Core package

It was a plugin package Unity. The Team rewrote the thing from scratch!

Binding C# code is not yet open source.. Unity worked a lot to improve them.

23.02 is the USD that it was based on.

Q&A

Regarding the assets, we need to check what,s a game asset look like.
We need an atomic unit.
We also need large scenes.

A bigger discussion need to be done to be sure to have the right assets.

We need to find the more compelling way to make USD a good format for games.

How is the integration done?

It is done mainly done in Importer.

An underlying question is USD is a good format for runtime?

Another question is : how to support mobile etc

Another area that needs to be discussed is the roundabout and interchange.

How do you handle levels?

Unity tried to stick to Vanilla USD. There is no custom schemas support.

Is the USD turned into native internal structures, or is the USD format kept and adjusted directly?

USD are converted to prefab game objects

Is the file watcher aware of the references between file?

It keeps tracks of assets in the asset folder.

Are you allowed to share a roadmap?

No dates are shareable.

Unity needs to check how many people will need USD as a runtime format.

Unity is very open to ear from the community.

They need to check the adoption.

https://forum.unity.com/threads/new-openusd-packages-now-available.1524583/

Some questions are : is USD suited for my project, Can I do animation on USD, etc

Any follow up discussion on the wonderful presentations shown last month from @Alan
Kent and @Kev Kirkland

Spline Animation Proposal : Discussion on assembling a character in USD, this is an interesting
topic that @Frieder Erdmann brought up the other week.

https://academysoftwarefdn.slack.com/archives/C03GKF4DG7K/p1700757450973849

Hello! I'm looking into something that I'm assuming most game studios have (outside of USD) already in their pipelines and trying to see if this
would map well or less well into USD:
To assemble a character, we have usually three file types:
A character file with the base skeleton with the relevant bones/joints required by the default animation system (root, hips, legs, arms, head)
N number of attachment files, these usually contain Geometry and the part of the base skeleton that they skin to, as well as sometimes
additional bones/joints, that can be driven by secondary animations.
Some sort of manifest file that tells the engine to load the base skeleton with a number of attachments.
The process in the engine (at runtime) then takes the manifest file and creates an assembled character from the character file with the different
attachment files merged together into one.
Ideally I'd like to achieve something similar in USD in order to give proper preview to Animators in the DCC of their choice. We have done this in
the past in different DCCs with either
loading the different (FBX at the time) files and constraining them together (bone by bone) (maintaining the individual pieces, but slow to
evaluate in the DCC) or
having a pre-processor merge all (FBX again at the time) files together and then load the FBX data into the DCC in a lossy process (but faster
to work with in DCC)
With USD's referencing and opinion workflows, I was hoping that there would be some clever way to achieve this result, but so far, I'm
struggling to put something coherent together - hence my message here: Has anyone already looked at such a workflow and what was your
approach?

Charles Flèche
 19 days ago
As far I know you can't list list-edit an attributes, so generating the full set of bones can't be done with USD composition itself.
Maybe that could be done with additionnal logic ?
Variants per bone set contains contains a prim that has an attribute: a list of bones
When a variant is activated it also add the relationship a custom rel attribute to your Skeleton
on recomposition the attribute that contains the rel to Prim that contain bones is notified to have changed
a script rebuilds the full skeleton
(edited)
:+1:
1

Charles Flèche
 19 days ago
I am not super clear...

Charles Flèche
 19 days ago
Let me see if I can make a quick example

https://academysoftwarefdn.slack.com/archives/C03GKF4DG7K/p1700757450973849

Charles Flèche
 19 days ago
#usda 1.0
def SkelRoot "SkelRoot" (
 variants = {
 string tool = "hammer"
 string shoe = "trainer"
 }
 prepend variantSets = ["tool", "shoe"]
)
{
 def Skeleton "Skeleton"
 {
 uniform token[] joints = []
 custom token[] main_joints = ["root", "root/hand", "root/foot"]
 custom rel addons
 }

 variantSet "tool" = {
 "hammer" {
 over "Skeleton" {
 append rel addons = </SkelRoot/Skeleton/Hammer>

 def "Hammer" {
 custom token[] addon_joints = ["root/hand/hammerbase"]
 }
 }
 }
 "compass" {
 over "Skeleton" {
 append custom rel addons = </SkelRoot/Skeleton/Compass>

 def "Compass" {
 custom token[] addon_joints = ["root/hand/hinge", "root/hand/hinge/left", "root/hand/hinge/right"]
 }
 }
 }
 }

 variantSet "shoe" = {
 "trainer" {
 over "Skeleton" {
 append rel addons = </SkelRoot/Skeleton/Trainer>

 def "Trainer" {
 custom token[] addon_joints = ["root/foot/trainer"]
 }
 }
 }
 "robotBoot" {
 over "Skeleton" {
 append custom rel addons = </SkelRoot/Skeleton/RobotBoot>

 def "RobotBoot" {
 custom token[] addon_joints = ["root/foot/boot", "root/foot/boot/hinge", "root/foot/boot/hinge/tip"]
 }
 }
 }
 }
}

Charles Flèche
 19 days ago
image.png

image.png

Charles Flèche
 19 days ago
Don't know if it is clearer, but at list if you open the file above in usdview you should be able to switch variants and see /SkelRoot/Skeleton.
addons to be update with the list of addons prim. Those prim contains a list of addon_joints , so with a notification handler you should be able to
recompose /SkelRoot/Skeleton.joins on top of the base skeleton bones defined in /SkelRoot/Skeleton.main_joinrs

Typical problem is : when you have extra joints in the jacket, how do you simulate these joints.

USD does not allow to do extra operation on the Skeletal.

Koen Vroeijenstijn haven't found yet a good way. A simple constraint would be good for games.

TJ worked on a schema for that but wasn't able to finish his work.

For Frieder, constraint is one solution. In MoBu and Maya become heavy resources
Another solution is to have one skeleton.
A very good solution would have the ability to reference another skeleton to evaluate one hierarchy.

For animation is very important to have all in one system.

Setting up something work to create asset for animation. TJ will check for that.

Attendance
François Devic, Co-Lead

TJ Trently, Co-Lead, Firewalk

Alex Schwank - WG Co-chair, Apple

Nick Porcino - WG Co-chair, Pixar

Michael Min - USD Camera WG, Netflix

Roman Zulak - USD on the web WG, NVIDIA

Aaron Luk, NVIDIA

Adam Harder

Alan Blevins, NVIDIA

Alessandro Bernardi - Ubisoft - HELIX Studio

Alex Gerveshi, AWS

Alex Wilkie

Alexander Kalyuzhnyy, Wizart Animation

Allen Hastings, Foundry

Aloys Baillet, Animal Logic

Alson Entuna, Crytek

Alyssa Reuter

Andy Beers

Charles Flèche
 19 days ago
IIRC there was a discussion on the previous Google List on allowing list-editing uniform (non time sampled) Attributes. That definitely could be
useful for this kind of workflow, as Skeleton.joints is uniform, so we could leverage's USD list-editing operations directly.

Koen Vroeijenstijn
 18 days ago
When I tried to represent attachments elegantly, I ran into the issue that there is no parenting to bones. As all the joints are represented as a
single prim, you cannot parent the attachment to a specific joint (connect the neck joint of the body to the neck joint of the body for example to
swap out heads). For static models, I just apply the transform of the "attach to" joint to the attachment, if you then convert to native geometry,
you can easily create a parent contraint, but it's not ideal. I played around with merging the skeletons, but then updating all the skin weights for
the meshes gets messy. Maybe we can have a very simple "parent joint constraint" or perhaps a more expensive representation of a usdskel
which does unroll into the regular scene graph. Hope I remember right, it was a while ago I looked at this. Curious if Charles' suggestion works
for you, please keep us posted. (edited)
:+1:
1

Alan Kent
 15 days ago
A standard way to do parenting to bones, or a "UsdSkel as prims" would be nice. E.g. how to put an arbitrary hat on a head?

https://wiki.aswf.io/display/~kvroeijenstijn

Andy Biar, Warner Bros.

Ana Gomez

Anandhaiyappan, Botvfx

Angelo Gabriel Sapaula

Anthony Tan, Autodesk

Anton Palmqvist

Arash Keissami, Nira.app

Arielle Martin, Foundry

Ashwin Bhat - USD and MaterialX, Autodesk

Barry Ruff

Ben Chung-Hoon, NVIDIA

Ben Deniz

Bernard Kwok, Autodesk

Bill Dwelly

Bill Spitzak, Dreamworks Animation

Blazej Floch

Brian Gyss, 5th Kind

Bruno Ebe

Bruno Landry (Unity)

Carlos Felipe Garcia Murillo

Carolin Colón

Carson Brownlee, Intel

Charleen Chu, SPI

Charles Flèche, Ubisoft Montréal

Chris King

Christopher Lexington

Chris Rydalch, SideFX

Claire Chen

Claire Yb

Claude Robillard

Connor Smith, Magic Leap

Corey Revilla

Cory Omand, TWDS/Pixar

Curtis Andrus

Dan Herman

Dan Lee

Dan Rolinek

Daniel Heckenberg, Animal Logic

Daniel Lanner

Dave Hale, Riot Games

David Aguilar, Walt Disney Animation

David Larsson, Adobe

Dean Jackson, Apple

Deke Kincaid, Digital Domain

Dhruv Govil, Apple

Divyansh Mishra

Diya Joy

Domenico Alessi

Dominic Couture

Doug MacMillan, Tippett Studio

Edward Slavin, NVidia

Élie Michel

Eric Chadwick, Wayfair

Eoin Murphy, NVidia

Eric Enderton, NVidia

Eric Majka, Psyonix/Epic Games

Erik Ostsjo

Étienne Archambault

F. Sebastian Grassia, Pixar

Fabrice Macagno, Animal Logic

Felix Herbst, Prefrontal Cortex

Fernando Leandro

Francois Lord, NAD-UQAC / Rodeo FX

Frieder Erdmann, Ubisoft Massive

Gary Jones, Foundry

Geoff Evans, NVIDIA

Georgie Challis

Gordon Bradley, Autodesk

Gordon Cameron, Epic Games

Guido Quaroni, Adobe

Guillaume Laforge, Autodesk

Guy Martin, NVIDIA

Hamed Sabri

Hendrik Helpach

Henrik Edstrom, Autodesk

Henry Vera, DNEG

Ife Olowe

James Pedlingham, Foundry

Jason Rosson

Jeff Bradley, Dreamworks

Jenna Bell, Disney / Invisible Thread

Jennifer Horowitz, Maxar

Jenny Zhang

Jeremiah Zanin, Santa Monica Studio

Jeremy Cowles - USD Assets WG Chair, Valve

Jerran Schmidt, NVIDIA

Jerry Gamache

Jesse Barker

Jesse Ng, Metropolitan Museum of Art

Jessica Wang, Pixar

Joe Hultgren

John Burnett, Bonfire Studios

John Creighton, Apple

John Hood, SPI

John Mertic, Linux Foundation

Jon Creighton, Apple

Jon Wade, Spotify

Jonah Friedman, Autodesk

Jonathan Gerber

Jonathan Stone

Jonghwan Hwang

Jordan Soles, Rodeo FX

Jordan Thistlewood, Epic

Joshua Miller

Joseph Goldstone

JP Mackel

JT Nelson, Pasadena Open Source Consortium/SoCal Blender group

Julien Dubuisson

Kev Kirkland

Kevin Bullock

Kelvin Chu, Riot Games

Kimball Thurston, Weta

Koen Vroeijenstijn, Activision / Infinity Ward

Kristof Minnaert, Remedy Entertainment

Kurtis Schmidt

Laura Scholl

Larry Gritz, SPI

Lee Kerley, SPI

Levi Biasco, Santa Monica Studio

Louis Marcoux, NVIDIA

Lucas Morante, Illusorium

Luca Scheller, RiseFX

Luiz Kruel, R* NYC

Luke Titley

Manuel Köster, Crytek

Mark Alexander

Mark Elendt, SideFX

Mark Final, Foundry

Mark Masson

Mark Manca

Mark Sisson

Mark Tucker, SideFX

Marteinn Oskarsson, Sony Imageworks

Martin Karlsson

Mathieu Bertrand

Mathieu Mazerolle, Foundry

Matias Codesal, NVIDIA

Matt Johnson, Epic Games

Matt Kuruc, NVIDIA

Matthew Levine, WDAS

Matthew Low, DWA

Michael B. Johnson, Apple

Michael Blain, Unity

Michael Buckley

Michael Kass, NVidia

Michael Min

Mika Vehkala, Remedy Entertainment

Mikko Haapoja, Shopify

Nat Brown

Natasha Tatarchuk, Unity

Neil Chodorowski

Niall Redmond, Foundry

Nicolas Popravka, Soul Machines

Nicolas Savva

Nishanth Singaraju

Nishith Singhai

Oliver Dunn

Oscar Sebio, Autodesk

Paolo Selva, Weta

Paul Baaske, Jellyfish Pictures

Paul Molodowitch, NVIDIA

Patrick Palmer

Peter Arcara

Pete Segal

Phil Sawicki, NVIDIA

Prapanch Swamy, Disney / Invisible Thread

Pier Paolo Ciarravano, MPC

Pierre-Luc Bruyere

Quentin Birrer

Ramesh Santhanam

Rebecca Hallac

Richard Frangenberg

Richard Kerris, nVidia

Richard Lei, Weta

Rob Pieké

Rob Stauffer, SideFX

Robert Krupa, Elemental Games

Robin Rowe, CinePaint

Rohit Khonde

Rory Woodford, Foundry

Ryan Stelzleni

Scott Geffert, Metropolitan Museum of Art

Scott Keating

Sean Looper, AWS

Sean McDuffee, Intel

Seb Schmidt, Weta

Sebastian Herholz, Intel

Sebastian Grassia, Pixar

Sebastian Rath, Snowtrack Montréal

Sebastien Dalgo, Unity

Sergei Shaykin, Apple (usdzconvert)

Sergio Rojas, Different Dimension

Serguei Kalentchouk, Netflix

Shane Davis, SideFX

Shawn Dunn, Epic Games

Simon Haegler, Esri

Silvia Palara

Sneha Jaikumar

Spencer Luebbert

Stefan Habel, Foundry

Stephan Leroux, Shopify

Steve Agland, Animal Logic

Steve Hwan, DD

Steve LaVietes

Steven Anichini, Disbelief

Sue Sauer, Sunrise Productions

Sylvain Trottier, NVIDIA

Thibault Lambert

Thomas Chollet

Thomas Kumlehn

Tiago Carvalho

Tim Armstrong

Tim Fowler

Tzung-da Tsai

Vadim Slyusarev

Varun Talwar

Wayne Wu

Will Telford, NVIDIA

Xiaoxi Liu, Unity

Yassine Mankai

YJ Jang

	December 13, 2023

