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New Unity plugin
Any follow up discussion on the wonderful presentations shown last month from  @Alan Kent  and @Kev Kirkland
Spline Animation Proposal : Discussion on assembling a character in USD, this is an interesting topic that @Frieder Erdmann  brought up the 
other week.

Notes

Unity Plugin 

https://forum.unity.com/threads/new-openusd-packages-now-available.1524583/

USD Importer
USD Exporter
USD Core package

It was a plugin package Unity. The Team rewrote the thing from scratch!

Binding  C# code is not yet open source.. Unity worked a lot to improve them.

23.02 is the USD that it was based on.

Q&A

Regarding the assets, we need to check what,s a game asset look like. 
We need an atomic unit.
We also need large scenes.

A bigger discussion need to be done to be sure to have the right assets.

We need to find the more compelling way to make USD a good format for games.

How is the integration done?

It is done mainly done in Importer.

An underlying question is USD is a good format for runtime?

Another question is : how to support mobile etc

Another area that needs to be discussed is the roundabout and interchange.

How do you handle levels?

Unity tried to stick to Vanilla USD. There is no custom schemas support.

Is the USD turned into native internal structures, or is the USD format kept and adjusted directly?

USD are converted to prefab game objects

Is the file watcher aware of the references between file?

It keeps tracks of assets in the asset folder.

Are you allowed to share a roadmap?

No dates are shareable.

Unity needs to check how many people will need USD as a runtime format.

Unity is very open to ear from the community.

They need to check the adoption.

https://forum.unity.com/threads/new-openusd-packages-now-available.1524583/


Some questions are : is USD suited for my project, Can I do animation on USD, etc

Any follow up discussion on the wonderful presentations shown last month from  @Alan 
Kent  and @Kev Kirkland

Spline Animation Proposal : Discussion on assembling a character in USD, this is an interesting 
topic that @Frieder Erdmann  brought up the other week.

https://academysoftwarefdn.slack.com/archives/C03GKF4DG7K/p1700757450973849

Hello! I'm looking into something that I'm assuming most game studios have (outside of USD) already in their pipelines and trying to see if this 
would map well or less well into USD:
To assemble a character, we have usually three file types:
A character file with the base skeleton with the relevant bones/joints required by the default animation system (root, hips, legs, arms, head)
N number of attachment files, these usually contain Geometry and the part of the base skeleton that they skin to, as well as sometimes 
additional bones/joints, that can be driven by secondary animations.
Some sort of manifest file that tells the engine to load the base skeleton with a number of attachments.
The process in the engine (at runtime) then takes the manifest file and creates an assembled character from the character file with the different 
attachment files merged together into one.
Ideally I'd like to achieve something similar in USD in order to give proper preview to Animators in the DCC of their choice. We have done this in 
the past in different DCCs with either
loading the different (FBX at the time) files and constraining them together (bone by bone) (maintaining the individual pieces, but slow to 
evaluate in the DCC) or
having a pre-processor merge all (FBX again at the time) files together and then load the FBX data into the DCC in a lossy process (but faster 
to work with in DCC)
With USD's referencing and opinion workflows, I was hoping that there would be some clever way to achieve this result, but so far, I'm 
struggling to put something coherent together - hence my message here: Has anyone already looked at such a workflow and what was your 
approach?

Charles Flèche
  19 days ago
As far I know you can't list list-edit an attributes, so generating the full set of bones can't be done with USD composition itself.
Maybe that could be done with additionnal logic ?
Variants per bone set contains contains a prim that has an attribute: a list of bones
When a variant is activated it also add the relationship a custom rel attribute to your Skeleton
on recomposition the attribute that contains the rel to Prim that contain bones is notified to have changed
a script rebuilds the full skeleton
(edited)
:+1:
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Charles Flèche
  19 days ago
I am not super clear...

Charles Flèche
  19 days ago
Let me see if I can make a quick example

https://academysoftwarefdn.slack.com/archives/C03GKF4DG7K/p1700757450973849


Charles Flèche
  19 days ago
#usda 1.0
def SkelRoot "SkelRoot" (
  variants = {
    string tool = "hammer"
    string shoe = "trainer"
  }
  prepend variantSets = ["tool", "shoe"]
)
{
  def Skeleton "Skeleton"
  {
    uniform token[] joints = []
    custom token[] main_joints = ["root", "root/hand", "root/foot"]
    custom rel addons
  }
  
  variantSet "tool" = {
    "hammer" {
      over "Skeleton" {
        append rel addons = </SkelRoot/Skeleton/Hammer>
        
        def "Hammer" {
          custom token[] addon_joints = ["root/hand/hammerbase"]
        }
      }
    }
    "compass" {
      over "Skeleton" {
        append custom rel addons = </SkelRoot/Skeleton/Compass>
        
        def "Compass" {
          custom token[] addon_joints = ["root/hand/hinge", "root/hand/hinge/left", "root/hand/hinge/right"]
        }
      }
    }
  }
  
  variantSet "shoe" = {
    "trainer" {
      over "Skeleton" {
        append rel addons = </SkelRoot/Skeleton/Trainer>
        
        def "Trainer" {
          custom token[] addon_joints = ["root/foot/trainer"]
        }
      }
    }
    "robotBoot" {
      over "Skeleton" {
        append custom rel addons = </SkelRoot/Skeleton/RobotBoot>
        
        def "RobotBoot" {
          custom token[] addon_joints = ["root/foot/boot", "root/foot/boot/hinge", "root/foot/boot/hinge/tip"]
        }
      }
    }
  }
}

Charles Flèche
  19 days ago
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Charles Flèche
  19 days ago
Don't know if it is clearer, but at list if you open the file above in usdview you should be able to switch variants and see /SkelRoot/Skeleton.
addons to be update with the list of addons prim. Those prim contains a list of addon_joints , so with a notification handler you should be able to 
recompose /SkelRoot/Skeleton.joins  on top of the base skeleton bones defined in /SkelRoot/Skeleton.main_joinrs



Typical problem is : when you have extra joints in the jacket, how do you simulate these joints.

USD does not allow to do extra operation on the Skeletal.

Koen Vroeijenstijn haven't found yet a good way. A simple constraint would be good for games.

TJ worked on a schema for that but wasn't able to finish his work.

For Frieder, constraint is one solution. In MoBu and Maya become heavy resources
Another solution is to have one skeleton. 
A very good solution would have the ability to reference another skeleton to evaluate one hierarchy.

For animation is very important to have all in one system.

Setting up something work to create asset for animation. TJ will check for that.
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Charles Flèche
  19 days ago
IIRC there was a discussion on the previous Google List on allowing list-editing uniform (non time sampled) Attributes. That definitely could be 
useful for this kind of workflow, as Skeleton.joints is uniform, so we could leverage's USD list-editing operations directly.

Koen Vroeijenstijn
  18 days ago
When I tried to represent attachments elegantly, I ran into the issue that there is no parenting to bones. As all the joints are represented as a 
single prim, you cannot parent the attachment to a specific joint ( connect the neck joint of the body to the neck joint of the body for example to 
swap out heads). For static models, I just apply the transform of the "attach to" joint  to the attachment, if you then convert to native geometry, 
you can easily create a parent contraint, but it's not ideal. I played around with merging the skeletons, but then updating all the skin weights for 
the meshes gets messy. Maybe we can have a very simple "parent joint constraint" or perhaps a more expensive representation of a usdskel 
which does unroll into the regular scene graph. Hope I remember right, it was a while ago I looked at this. Curious if Charles' suggestion works 
for you, please keep us posted. (edited) 
:+1:
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Alan Kent
  15 days ago
A standard way to do parenting to bones, or a "UsdSkel as prims" would be nice. E.g. how to put an arbitrary hat on a head?

https://wiki.aswf.io/display/~kvroeijenstijn
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